ESCAP/WMO Typhoon Committee 8th IWS/2nd TRCG Forum on the main theme of "Forecasting, Warning and DRR Strategies in the Mitigation of Tropical Cyclone Impact in a Multi-hazard Environment" Macao Science Center, Macao, 2-6 / Dec / 2013

## Storm Surge Disasters by Typhoons and Information for Disaster Risk Reduction

Nadao Kohno

Office of Marine Prediction, Global Environment and Marine Department, JMA

nkono@met.kishou.go.jp; nkohno@mri-jma.go.jp



# Contents

### Introduction

□Basics of storm surges

□A storm surge case : Ty Haiyan (1330)

### Storm Surge Information

□Storm surge model

Storm Surge Watch Scheme

### An integrated approach

Coastal Inundation Forecast Demonstration Project (CIFDP)

### Summary



# Contents

### Introduction

□Basics of storm surges

□A storm surge case : Ty Haiyan (1330)

### Storm Surge Information

□Storm surge model

Storm Surge Watch Scheme

### An integrated approach

Coastal Inundation Forecast Demonstration Project (CIFDP)

### Summary



# Introduction

## Definition of storm surges

- Abnormal rise of sea level caused by meteorological phenomena (typhoons, hurricanes, cyclones, extratropical cyclones).
- Sea level changes are caused by <u>strong winds and</u> <u>pressure depressions</u>.
- From a hydro-dynamical point of view, storm surges are classified to external gravity waves, especially shallow water waves (long waves) as their large horizontal scale, as well as tsunamis.

## Comparison of storm surges, tsunamis and ocean waves

Cause is different

|                                                              | Ocean waves                      | Storm surges                                                     | Tsunamis                                                   |  |  |  |
|--------------------------------------------------------------|----------------------------------|------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| Cause                                                        | Meteorological<br>(strong) winds | Meteorological<br>Strong winds and<br>pressures<br>( by TC etc ) | Crustal movement<br>(earthquakes,<br>Eruptions)            |  |  |  |
| Property of waves                                            | Short wave<br>(deep water)       | Long wave<br>(shallow water)                                     | Long wave<br>(shallow water)                               |  |  |  |
| Horizontal<br>scales (m)                                     | 10 <sup>2</sup>                  | 10 <sup>5*</sup>                                                 | 10 <sup>5~6</sup>                                          |  |  |  |
| Time scales (s)                                              | 10 <sup>1</sup>                  | 10 <sup>3~5</sup>                                                | 10 <sup>3~5</sup>                                          |  |  |  |
| *The horizontal scale of storm surges is assumed as TC scale |                                  |                                                                  |                                                            |  |  |  |
| Characteristics                                              |                                  | Tsu nami<br>津 波<br>(port) (wayes)                                | the waves become<br>predominant and<br>disastrous in ports |  |  |  |

## Expression of storm surges

### Storm tide

Maximum sea level including variation of astronomical tides.

Storm tides are used for expression of the magnitude of disasters. Also used for disaster prevention practically.

note: you need to be aware of the base water level, such as Mean Sea Level (MSL), Chart Datum Level (CDL) etc.



Maximum sea level anomaly from (estimated) astronomical tide. Storm surges are used for expression of the magnitude of phenomena.



Strom surge = maximum anomaly = observed sea level - astronomical tide

## Mechanism of storm surges

Storm surges

- caused by developed tropical cyclones etc.

What decides the magnitude?

a. Inverse Barometer effectb. Wind set-up

## a. Inverse Barometer effect

#### The static balance

the sea level and the surface pressure

- $\rho$  : sea water density
- g : gravitational acceleration
- S : area
- $\Delta h$  : sea level rise
- $\Delta p$  : pressure depression

 $\rho g \Delta h \cdot S = \Delta p \cdot S$ 

 $\Delta h = \frac{\Delta p}{\rho g} = \frac{1.0[hPa]}{1.0[g/cm^{-3}] \times 9.8[m/s^{-2}]} \approx 1.0[cm]$ 

*1hPa pressure decrease* ≒ 1cm sea level rise



## b. Wind set-up

#### Wind force (Stress) to sea

 $\tau$ : wind stress  $\propto V^2$ L : fetch (horizontal scale) h : water depth

$$g\frac{\partial\eta}{\partial x} = \frac{\tau}{\rho h} \left(\frac{\partial\eta}{\partial x} = \frac{\tau}{\rho g h}\right)$$
$$\eta = \int_0^L \frac{\tau}{\rho g h} dx = \frac{\tau}{\rho g h} \cdot L$$

η:
∝ V<sup>2</sup> (square of wind speed)
∝ L (horizontal scale of wind)
∝ 1/h (inverse of water depth)



## **Risk of Storm Surges**



Storm surges usually become large in shallow bays opened to against wind of tropical cyclones.



Risk of high storm surges critically depends on TC tracks (landfall point ).



## Storm surges by Typhoon Haiyan (1330)







Bathymetry of the Philippines 12

## Storm surges by Ty Haiyan

#### Preliminary simulation was carried out with a high resolution JMA storm surge model

#### Calculation condition:

grid resolution: 30 seconds typhoon information: analysis tide: not included calculation: 00UTC 07 NOV – 00UTC 09 NOV.





# Maximum storm surge by Ty Haiyan

Maximum storm surge: Around 5m





# Contents

### Introduction

Basics of storm surgesA storm surge case : Ty Haiyan (1330)

### Storm Surge Information

□Storm surge model

□Storm Surge Watch Scheme

### An integrated approach

Coastal Inundation Demonstration Project (CIFDP)

### Summary



## Accurate storm surge prediction



16

## Operational Storm Surge Models at JMA

|                              | Japan Area                                                                                                                                     | Asia Area                                |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Model                        | 2 dimensional non-linear model                                                                                                                 | 2 dimensional lineralized model          |  |
| Coordinate                   | Lat/Lon Cartesian grid<br>Arakawa C-Grid                                                                                                       | Lat/Lon Cartesian grid<br>Arakawa C-Grid |  |
| Area                         | 20.0N~50.0N<br>117.4E~150.0E                                                                                                                   | 0.0~46.0N<br>95.0E~160.0E                |  |
| Grid resolution              | 45''×30''~12'×8'<br>(1km~16km)<br>Adaptive Mesh Refinement (AMR)                                                                               | 2'×2'<br>(≒3.7km)                        |  |
| Time step                    | 4 seconds                                                                                                                                      | 8 seconds                                |  |
| Forecast hours               | 33(30)                                                                                                                                         | 72                                       |  |
| Calculation run              | 8 times / day<br>(3 hourly)                                                                                                                    | 4 times / day<br>(6 hourly)              |  |
| Initial time (UTC)           | 00,03,06,09,12,15,18,21                                                                                                                        | 00,06,12,18                              |  |
| Number of prediction courses | In case of Typhoons: 6 courses<br>(Center, 4 courses on the forecast<br>circles, NWP predicted course)<br>No typhoon: 1 course<br>(NWP course) | 1 course<br>(NWP predicted course)       |  |
| forcing                      | MSM GPV (5km)                                                                                                                                  | GSM GPV (20km)                           |  |
| Typhoon bogus                | Pressure profile: Fujita(1952)<br>Gradient wind (with inflow angle 30 deg.)<br>Asymmetric component by typhoon movement                        |                                          |  |

WMO Storm Surge Watch Scheme (SSWS)

# Real-time storm surge information issued for TC Members by the RSMC Tokyo

- Storm surge distribution maps (2011.6 -)
- Storm surge time series charts (2012.6 -)

#### History

- 2008.6 60<sup>th</sup> WMO Executive Council (Geneva, 2008.6) Request to WMO/SG to facilitate development of Storm Surge Watch Scheme.
- 2008.12 14th Regional Association II (Tashkent)
- 2009.1 41<sup>st</sup> Typhoon Committee (Chiang Mai) plan for the establishment of a Regional Storm Surge Watch Scheme suitable for the TC region.
- 2010.1 42<sup>nd</sup> Typhoon Committee (Singapore) request to Members of providing tidal data & bathymetric data to RSMC Tokyo. (System development in JMA)
- 2011.6 RSMC Tokyo has started operation to provide storm surge distribution maps through its Numerical Typhoon Prediction (NTP) website.
- 2012.6 RSMC Tokyo has started to provide storm surge time series charts at one point for each TC Member (forecasting points to be increased in due course).
- 2013.6 RSMC Tokyo extended forecasting region and added seven stations for time series charts.



•4 times run a day (00/06/12/18 UTC)

Products are provided to the Typhoon committee members via the JMA Numerical Typhoon Prediction (NTP) Website <sup>18</sup>

## Product examples

Horizontal storm surge maps - Whole domain maps and enlarged ones around a typhoon (3hourly, up to 72 hours) are provided (1 June, 2011 ~)

#### JMA Numerical Typhoon Prediction (NTP) Website





130E

140E

## **Product examples**

# JMA has started to provide time series charts at selected locations to the Typhoon Committee Members since 5 June, 2012.

- Currently provided for ten locations:

Macao, Quarry Bay (Hong Kong), Hua Hin, Chum Phon (Thailand),

Incheon, Boryeong, Mokpo, Busan, Jeju, Sokcho (Korea)

9 locations (Philippines), 20 locations (Vietnam), and 1 location (Guam) are going to be added in 2014.

#### - Locations will further increase upon request from TC Members



(a) Predicted (red) and astronomical (blue) tides

(b) Storm surges (green), surface pressure (orange) and wind barbs

Example of a time series data at Quarry Bay (Hong Kong)

# **SSWS Product for Ty Haiyan**

JMA issues storm surge distribution maps, but it becomes invisible when pressure contours are densely drawn.



TC1 FT=33 valid=03Z08N0V2013 (special map sent to PAGASA) initial=18Z06N0V2013



JMA sent storm surge distribution map without pressure labels, but it is still difficult to measure the maximum storm surge.

We are now planning to modify the map image, so that, the maximum surge height can be easily recognized.

# Contents

### Introduction

□Basics of storm surges

### □A storm surge case : Ty Haiyan (1330)

### Storm Surge Information

□Storm surge model

Storm Surge Watch Scheme

### An integrated approach

Coastal Inundation Forecast Demonstration Project (CIFDP)

### Summary



## **Coastal Inundation Forecast** Demonstration Project (CIFDP) http://www.jcomm.info/CIFDP



### From WMO brochure

23



### **CIFDP** Implementation

### http://www.jcomm.info/CIFDP



Natural Disaster Hotspots: A Global Risk Analysis. World Bank, 2005



## System Design

|                    | Bangladesh                   | Fiji                                                                                                                         |          |  |
|--------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------|--|
| SSurge Model       | JMA-MRI                      | TBD (MRI, Delft3DFM)                                                                                                         |          |  |
| - Wave input       | Fixed value (TBD)            | CIFDP-B (Bangladesh): Phase 2                                                                                                |          |  |
| - Wind Input       | Parametric - BMD             | Oct'11 Initial National Agreement<br>Dec'11 National Stakeholders Workshop – Phase 1<br>Feb'13 Definitive National Agreement |          |  |
| - Ensembles        | Desirable - testing          |                                                                                                                              |          |  |
| Bathymetry         | Best Available - Navy        | May'13 Phase 2 (system implementation)                                                                                       | launched |  |
| Wave Model         | N/A                          | 24' m 10<br>9<br>9                                                                                                           |          |  |
| River Discharge    | Real-time flow (FFWC)        |                                                                                                                              |          |  |
| Integrating System | Delft FEWS                   | 20                                                                                                                           |          |  |
| DEM                | Best Available – SOB (*2016) |                                                                                                                              |          |  |
| Tides              | Constituents?                | Aus or global model forecast                                                                                                 |          |  |
| SSHA               | N/A                          | BoM operational forecast                                                                                                     | _        |  |

# JMA collaboration with NMHSs

## JMA also trains staff of other National Met. / Hydro. Services and provides storm surge model for using their own operation.

- **ESCAP/WMO** Typhoon Committee Attachment Training at the RSMC Tokyo
- TCP/JCOMM Technical workshop
- JICA training course
- individual visits

 (Recent one)
 Training and Capacity building on Storm Surge Modeling and Risk Mapping (24-28, June, 2013, in Bangkok)
 Organized by <u>Asian Disaster Preparedness Center (ADPC)</u>,
 Supported by <u>UNESCAP Trust Fund for Tsunami, Disaster and Climate</u> <u>Preparedness and the MOFA(Norway)</u>
 Participants: PAGASA(Philippines), DMH(Myanmar), DOM(Sri Lanka), NHMS(Vietnam), TMD(Thailand)



Example of storm surge prediction by Ty Haiyan, operationally simulated by PAGASA staff



# Contents

### Introduction

□Basics of storm surges

□A storm surge case : Ty Haiyan (1330)

### Storm Surge Information

□Storm surge model

□Storm Surge Watch Scheme

### An integrated approach

Coastal Inundation Forecast Demonstration Project (CIFDP)

### Summary



# Summary

- Storm surges: generated by meteorological forcing, such as TCs
- Inundation, accompanied by storm surges are very dangerous.
- Storm surge disasters do not occur so frequently, but we must not ignore them.
- Storm surge information is important
  - For accurate forecast, storm surge models are used: current status is satisfactory
- Advanced information
  - Integrated information will be desirable (surge, tide, wave, river flow, rain, etc...)

For DRR

- reliable and useful predictions
- adequate and timely countermeasures
- proactive action (early evacuation and so on)

**Provider** Met/Hydro Services, Governmental staff

> User citizen





#### The JMA Mascot "Harerun"

(The word "hare" means fine weather in Japanese. )